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The level-set approach is applied to a regime of premixed turbulent combustion where
the Kolmogorov scale is smaller than the flame thickness. This regime is called the
thin reaction zones regime. It is characterized by the condition that small eddies can
penetrate into the preheat zone, but not into the reaction zone.

By considering the iso-scalar surface of the deficient-species mass fraction Y
immediately ahead of the reaction zone a field equation for the scalar quantity G(x, t)
is derived, which describes the location of the thin reaction zone. It resembles the level-
set equation used in the corrugated flamelet regime, but the resulting propagation
velocity s∗L normal to the front is a fluctuating quantity and the curvature term
is multiplied by the diffusivity of the deficient species rather than the Markstein
diffusivity. It is shown that in the thin reaction zones regime diffusive effects are
dominant and the contribution of s∗L to the solution of the level-set equation is small.

In order to model turbulent premixed combustion an equation is used that contains
only the leading-order terms of both regimes, the previously analysed corrugated
flamelets regime and the thin reaction zones regime. That equation accounts for
non-constant density but not for gas expansion effects within the flame front which
are important in the corrugated flamelets regime. By splitting G into a mean and a

fluctuation, equations for the Favre mean G̃ and the variance G̃′′2 are derived. These
quantities describe the mean flame position and the turbulent flame brush thickness,

respectively. The equation for G̃′′2 is closed by considering two-point statistics. Scaling
arguments are then used to derive a model equation for the flame surface area ratio
σ̃. The balance between production, kinematic restoration and dissipation in this
equation leads to a quadratic equation for the turbulent burning velocity. Its solution
shows the ‘bending’ behaviour of the turbulent to laminar burning velocity ratio
sT /sL, plotted as a function of v′/sL. It is shown that the bending results from the
transition from the corrugated flamelets to the thin reaction zones regimes. This is
equivalent to a transition from Damköhler’s large-scale to his small-scale turbulence
regime.

1. Introduction
Damköhler (1940) was the first to present theoretical expressions for the turbulent

burning velocity. He identified two different regimes which he called large-scale and
small-scale turbulence, respectively. For large-scale turbulence he assumed that the
interaction between a wrinkled flame front and the turbulent flow field is purely
kinematic and therefore independent of lengthscales. This corresponds to the corru-
gated flamelets regime which has been discussed previously (cf. Peters 1986; Bray
1996). Damköhler equated the mass flux ṁ of unburnt gas with the laminar burning
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velocity sL through the turbulent flame surface area FT to the mass flux through the
cross-sectional area F with the turbulent burning velocity sT

ṁ = ρusLFT = ρusTF. (1.1)

Here ρu is the density of the unburnt mixture. The burning velocities sL and sT are
also defined with respect to the conditions in the unburnt mixture. This leads to

sT

sL
=
FT

F
. (1.2)

Using the geometrical analogy with a Bunsen flame, Damköhler assumed that the
area increase of the wrinkled flame surface area relative to the cross-sectional area is
proportional to the increase of flow velocity over the laminar burning velocity

FT

F
=
sL + v′

sL
. (1.3)

Here v′ is the velocity increase which finally is identified as the r.m.s. velocity v′.
Combining (1.2) and (1.3) leads to

sT

sL
= 1 +

v′

sL
. (1.4)

In the limit of a large ratio of the r.m.s. turbulent velocity v′ to the laminar burning
velocity sL the turbulent burning velocity sT is then proportional to v′

sT ∼ v′. (1.5)

This simple result has been generalized by Pocheau (1992) who used a renormalization
procedure to show that only an expression of the kind

sT

sL
=

(
1 + C

(
v′

sL

)n)1/n

(1.6)

satisfies scale invariance in the corrugated flamelets regime.
For small-scale turbulence Damköhler argued that turbulence modifies the transport

between the reaction zone and the unburnt gas. In analogy to the scaling relation for
the laminar burning velocity

sL ∼ (D/tc)
1/2, (1.7)

where tc is the chemical timescale and D the molecular diffusivity, he used the
turbulent diffusivity Dt to obtain

sT ∼ (Dt/tc)1/2
. (1.8)

Therefore the ratio

sT

sL
∼
(
Dt

D

)1/2

(1.9)

is independent of tc, where it is implicitly assumed that the chemical timescale is not
affected by turbulence. Since the turbulent diffusivity Dt is proportional to the product
v′` where ` is the integral lengthscale, and the laminar diffusivity is proportional to
the product of the laminar burning velocity and the flame thickness `F one may write
(1.9) as

sT

sL
∼
(
v′

sL

`

`F

)1/2

(1.10)
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showing that for small-scale turbulence the ratio of the turbulent to the laminar burn-
ing velocity not only depends on the velocity ratio v′/sL but also on the lengthscale
ratio `/`F .

In the following half-century there were many attempts to modify Damköhler’s
analysis and to derive expressions that would reproduce the large amount of experi-
ment data on turbulent burning velocities. Expressions of the form

sT

sL
= 1 + C

(
v′

sL

)n
(1.11)

have been proposed. The exponent n is often found to be in the vicinity of 0.7 (Williams
1985a, p. 429ff.). Attempts to justify a single exponent on the basis of dimensional
analysis, however, fall short even of Damköhler’s pioneering work; he had recognized
the existence of two different regimes in premixed turbulent combustion.

A common feature of all premixed flames seems to be that they contain a chemically
inert preheat zone. Recent asymptotic studies for many flames ranging from hydrogen
over methane and methanol up to n-heptane and iso-octane (see Seshadri 1996
for a recent review) have confirmed this classical picture of Zel’dovich & Frank-
Kamenetzkii (1938), although the chemical details are quite different (Peters 1997).
The chemically inert preheat zone is followed by a thin inner layer in which the fuel
is attacked by radicals and is oxidized via chain reactions to CO and H2. This layer
controls the flame structure. It is followed by a post-flame oxidation layer where the
final products are formed. The thickness of the inner layer is

`δ = δ`F , (1.12)

where δ is typically of the order 0.1 whereas the preheat zone is of the order of the
flame thickness `F .

In this paper we will consider the case that small eddies of the thickness of the
Kolmogorov scale can penetrate into the preheat zone, but not into the inner layer.
The reaction zone therefore remains a thin zone, which essentially is not affected
by turbulent mixing. We call this the thin reaction zones regime. If the inner layer
were disturbed by eddies of its own thickness or smaller, one would expect the entire
reaction zone to be disrupted. Thus the chemical timescale is not the same as in
laminar flames and Damköhler’s assumption leading to (1.9) can no longer be valid.
When this happens another regime follows where an interaction between turbulence
and chemistry must be considered.

The paper is organized in the following way: In § 2 we will identify the thin
reaction zones regime within a regime diagram of premixed turbulent combustion
and derive a mixing lengthscale that accounts for the thickening of the preheat zone
in that regime. In § 3, as a crucial step of the analysis, we will apply the level-set
approach to the thin reaction zone regime and derive an equation for the scalar
quantity G(x, t). It is combined with the corresponding G-equation for the corrugated
flamelets regime to obtain a formulation that contains the leading-order terms for
both regimes. The resulting G-equation is written for non-constant density but does
not include gas expansion effects. In § 4 we will derive equations for the Favre average

G̃ and its variance G̃′′2 for both regimes. Closure of the sink terms in the variance
equations leads to scaling relations for the flame surface area ratio σ̃ which differs
fundamentally in the two regimes. In § 5 we will model a transport equation for σ̃t, the
flame surface area ratio increase by turbulence that covers both regimes. Modelling
assumptions generally used in two-equation models of turbulence are introduced.
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Figure 1. Regime diagram for premixed turbulent combustion.

From the balance of the source terms in the σ̃t equation an algebraic expression for
the turbulent burning velocity is then derived. In the Appendix closure relations of
the sink terms in the variance equation are derived for the thin reaction zones regime
using two-point correlations under the assumption of constant density and isotropic
turbulence.

2. Regimes in premixed turbulent combustion
Diagrams defining combustion regimes in terms of length and velocity scale ratios

(Borghi 1985; Peters 1986) or in terms of the Reynolds and the Damköhler number
(Williams 1985b) have been quite popular in recent years. The thin reaction zones
regime is shown in a diagram in terms of length and velocity scale ratios in figure 1.
One may relate the r.m.s. turbulent velocity v′ and the integral turbulent lengthscale
` to the turbulent kinetic energy k̄ and the dissipation ε̄ as

k̄ = 3
2
v′2 , ε̄ =

v′3

`
(2.1)

and define the integral timescale as

τ = `/v′. (2.2)

The Kolmogorov length, time and velocity scales are

η = (ν3/ε̄)1/4, tη = (ν/ε̄)1/2, vη = (νε̄)1/4, (2.3)

respectively, where ν is the kinematic viscosity immediately ahead of the inner layer.
For scaling purposes in this section it is useful to set the Schmidt number Sc = ν/D

equal to unity and to define the flame thickness `F and the flame time by

`F =
D

sL
=

ν

sL
, tF =

`F

sL
. (2.4)

Then, as in Peters (1986), we define the turbulent Reynolds number

Re = v′`/sL`F , (2.5)
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and the turbulent Karlovitz number as

Ka = tF/tη = `2
F/η

2 = v2
η/s

2
L. (2.6)

The different definitions in (2.6) follow from (2.3) and (2.4). Using (1.12) an additional
Karlovitz number based on the inner layer thickness `δ may also be introduced

Kaδ = `2
δ/η

2 = δ2 Ka. (2.7)

The definitions (2.1)–(2.6) can be used to derive the following relations between the
ratios v′/sL and `/`F in terms of the two non-dimensional numbers Re and Ka as

v′/sL = Re (`/`F )−1

= Ka2/3(`/`F )1/3. (2.8)

In figure 1, the lines Re = 1, Ka = 1 and Kaδ = 1 represent boundaries between the
different regimes of premixed turbulent combustion. Another boundary of interest is
the line v′/sL = 1, which separates the wrinkled and corrugated flamelets. The line
Re = 1 separates turbulent flames characterized by Re > 1 from laminar flames,
which are situated in the lower-left corner of the diagram. The remaining three
regimes belong to the flamelet regime since they are characterized by the existence of
thin layers. The regime of main interest here is the thin reaction zones regime, which
is separated by the line Ka = 1 from the corrugated flamelets regime. According
to (2.6), this is equivalent to the condition that the flame thickness is equal to the
Kolmogorov scale (the Klimov–Williams criterion).

The thin reaction zones regime is characterized by Re > 1, Ka > 1 and Kaδ < 1,
the second inequality indicating that the smallest eddies can enter into the flame
structure since η < `F . The last inequality indicates that eddies of size η are larger
than the inner layer thickness `δ and therefore cannot penetrate into that layer.

According to (2.7), if δ = 0.1 the value Kaδ = 1 corresponds to Ka = 100. This
value is used in figure 1 for the upper limit of the thin reaction zones regime. It seems
roughly to agree with the flamelet boundary obtained in numerical studies by Poinsot,
Veynante & Candel (1991), where two-dimensional interactions between a laminar
premixed flame front and a vortex pair were analysed. These simulations correspond
to Ka = 180 for cases without heat loss and Ka = 25 with small heat loss. The former
value would correspond to a reaction zone thickness of `δ = 0.07 `F and the latter to
`δ = 0.2 `F .

In the thin reaction zones regime small eddies entering into the preheat zone will
increase the scalar mixing, therefore destroying the quasi-steady flame structure that
exists in the corrugated flamelet regime. Therefore a steady-state burning velocity
cannot be defined anymore. But a chemical time, which is of the same order of
magnitude as the flame time tF can still be defined. According to (2.6) the flame time
is larger than the Kolmogorov time and therefore lies within the inertial range. This
may be used to define a characteristic length scale.

We may define a discrete sequence of eddies within the inertial range by

`n =
`

2n
> η, n = 1, 2, . . . . (2.9)

Since the energy transfer ε̄ is constant within the inertial range, dimensional analysis
relates the turnover time tn across the eddy `n to ε̄ as

ε̄ =
`2
n

t3n
. (2.10)



112 N. Peters

Fn

Burnt gas

Reaction zone

Preheated material

Unburnt
mixture

Figure 2. Transport of preheated material from a region of thickness `F by an eddy of size
`n = `m during half a turnover time tn = tF .

If we use (2.4) the flame time may be related to the diffusivity and the flame thickness
indicating that it is the time needed for diffusion of heat or chemical species across a
distance of the order of `F

tF =
`2
F

D
. (2.11)

Then, by setting tF = tn in (2.10), one obtains the lengthscale

`m = (̄εt3F )1/2. (2.12)

This is interpreted as a mixing lengthscale. It was identified by Zimont (1979) and
should therefore be called the Zimont scale. It corresponds to the size of an eddy
within the inertial range which has a turnover time equal to the time needed to diffuse
heat over a distance equal to `F . During half its turnover time an eddy of size `m
will therefore interact with the advancing reaction front and will be able to transport
preheated fluid from a region of thickness `F in front of the reaction zone over a
distance corresponding to its own size. This is schematically shown in figure 2. Much
smaller eddies will also do this but since they are smaller, their action will be masked
by eddies of size `m. Much larger eddies have a longer turnover time and would
therefore be able to transport structures thicker than `F across their own size, namely
those of thickness between `F and `m. They will therefore corrugate the broadened
flame structure at scales larger than `m. The physical interpretation of `m is that of
the maximum distance that preheated fluid will be transported ahead of the reaction
zone. The Zimont scale therefore broadens the preheat zone. The regime defined by
`δ < η < `F is therefore characterized by thick flames with thin reaction zones.

In a previous paper (Peters 1991) the lengthscale `m had incorrectly been interpreted
as a quench scale `q . In his thesis Chen (1994) tried to measure `q by performing
simultaneous measurements of temperature as well as of OH and CH concentration
fields by using two-dimensional Rayleigh thermometry and laser two-dimensional
induced fluorescence in three highly stretched turbulent methane–air Bunsen flames.
These flames fall into the thin reaction zones regime. Temperature iso-lines from this
thesis are plotted in figure 11 of Chen et al. (1996) showing broad regions of elevated
temperature in front of the reaction zone. The size of these regions was 1.9, 1.3 and
0.6 mm for the three different flames analysed in Chen (1994), respectively, while the
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Figure 3. Graphical illustration of the mixing scale `m within the inertial range.

flame thickness `F was estimated as 0.175 mm. The scale `q was clearly much larger
than the flame thickness.

The derivation of `m is illustrated in figure 3, showing (2.10) in a log-log plot of tn
over `n. If one crosses the time axis at tF = tn, the scale `m on the lengthscale axis
is obtained. If tF is equal to the Kolmogorov time tη , figure 3 shows that `m is equal
to the Kolmogorov scale η. In this case, one obtains `m = `F at the border between
the thin reaction zones regime and the corrugated flamelets regime. Similarly, if the
flame time tF is equal to the integral time τ, `m is equal to the integral lengthscale `.
This corresponds to the line Da = 1 in previous diagrams (Borghi 1985; Peters 1986;
Williams 1985b). Here, it turns out to have no particular significance in terms of
separating regimes of turbulence combustion, but to merely set a limit for the mixing
scale `m which cannot increase beyond the integral scale `. This illustrates that the
interaction between turbulence and combustion does not occur at the integral length
and timescales.

In figure 3 the flame thickness `F and the Gibson scale `G are also shown. The
Gibson scale defined by

`G =
s3L
ε̄

(2.13)

(Peters 1986) is smaller than the Kolmogorov scale and has no physical significance
in the thin reaction zones regime. The flame thickness `F is larger than η and smaller
than `m. It may also be noted that, since we have set ν = D, the Kolmogorov length
η is equal to the Obukhov–Corrsin scale

`C = (D3/ε)1/4, (2.14)

which will be used below.

3. The level-set approach for premixed combustion
It is useful to formulate the problem of premixed combustion in a general flow field

in terms of a partial differential equation that does not explicitly contain a chemical
source term. Such an equation may be derived for any well-defined front in a flow
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Figure 4. A schematic representation of the flame front as an iso-scalar surface of G(x, t).

field by defining the normal vector to the front as

n = − ∇G|∇G| (3.1)

and considering an iso-scalar surface representing the front as

G(x, t) = G0, (3.2)

where G0 is arbitrary. If one considers a flame front, the surface G(x, t) = G0 divides
the flow field into two regions where G > G0 is the region of burnt gas behind
the front and G < G0 that in front (figure 4). This is called the level-set approach.
Differentiating (3.2) with respect to t one obtains

∂G

∂t
+ ∇G · dx

dt

∣∣∣∣
G=G0

= 0. (3.3)

In the corrugated flamelets regime a kinematic balance involving the flow velocity v,
the burning velocity normal to the front sLn defines the resulting propagation velocity
dx/dt of the front as

dx

dt
= v + n sL. (3.4)

Introducing (3.4) into (3.5) and multiplying both sides by the density ρ one obtains
the equation derived by Williams (1985b)

ρ
∂G

∂t
+ ρv · ∇G = ρsL|∇G| (3.5)

which is known as the G-equation in the combustion literature. It contains a local
and a convective term but no diffusion term. Instead there is on the right-hand side a
propagation term containing the product of the burning velocity sL and the modulus
of G. Since (3.5) was derived at the flame front, it is valid at G(x, t) = G0 only.
Therefore the density ρ and the velocity v are conditional values at the front. If the
flame is assumed to be infinitely thin, the density, the flow velocity and the burning
velocity are conveniently defined as those of the unburnt mixture immediately ahead
of the flame. Even though the density is constant in the entire unburnt mixture, the
flow field immediately ahead of the flame will be influenced by gas expansion due to
heat release within the flame front. If, as in the following, the flame is assumed to
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be of finite thickness, a location within the flame structure must be defined to assign
to G(x, t) the value G0. Then, the density varies within the flame structure and the
velocity field v is affected by density changes.

Although G represents an arbitrary scalar it is convenient to interpret it as the
distance from the flame front by imposing the condition |∇G| = 1 for G 6= G0. Then
G has the dimension of a length. It will be called distance function in the following.

The burning velocity sL in (3.5) may be modified to account for the effect of flame
front curvature and flame strain. In asymptotic analyses employing the limit of a large
ratio of the fluid dynamic lengthscale to the flame thickness resulting in a quasi-steady
structure of the preheat zone, first-order corrections to the burning velocity due to
curvature κ and straining of the flame may be derived (Pelce & Clavin 1982; Matalon
& Matkowsky 1982) yielding

sL = s0L − s0LLκ+Ln · ∇v · n. (3.6)

Here s0L is the burning velocity of the unstretched flame and L is the Markstein
length.

The flame front curvature κ in (3.6) is defined as

κ = ∇ · n = ∇ ·
(
− ∇G|∇G|

)
= −∇

2G− n · ∇(n · ∇G)

|∇G| , (3.7)

where ∇(|∇G|) = −∇(n · ∇G) has been used. If (3.6) is introduced into (3.5) the
G-equation may be written as

ρ
∂G

∂t
+ ρv · ∇G = ρs0Lσ − ρDL κσ + ρLn · ∇v · nσ, (3.8)

where DL = s0LL is the Markstein diffusivity and

σ = |∇G| (3.9)

is the modulus of G conditioned at G(x, t) = σ. Since the kinematic balance (3.4) is
the basis of this equation, we will call it the kinematic G-equation.

The curvature term adds a second-order derivative to the kinematic G-equation.
This avoids the formation of cusps and non-unique solutions that would result from
(3.5) with a constant value of sL. The mathematical nature of (3.8) is that of a
Hamilton–Jacobi equation with a parabolic second-order differential operator due to
the curvature term.

We now want to derive an equivalent level-set formulation for the thin reaction
zones regime. Since small eddies enter into the preheat zone of the flame structure
we will consider the location immediately ahead of the inner layer as representative
for the location of the reaction zone. At that location the deficient reactant (fuel for
lean flames or oxygen for rich flames) takes small values. For example, the fuel mass
fraction for stoichiometric methane flames, normalized with respect to that in the
unburnt mixture, should be of the order of the inner layer thickness δ immediately
ahead of the inner layer (Peters 1997). Therefore, for an asymptotically thin inner
layer we define the location of the reaction zone by the iso-scalar surface of either
the fuel mass fraction YF or the oxygen mass fraction YO2

in the limit YF → 0 or
YO2
→ 0, respectively. We denote the mass fraction of the deficient species by Y and

its iso-scalar value ahead of the inner layer as Y0 and consider its balance equation

ρ

(
∂Y

∂t
+ v · ∇Y

)
= ∇ · (ρD∇Y ) + ṁ, (3.10)
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where D is its diffusion coefficient and ṁ its chemical source term. Similarly to (3.3)
the iso-scalar surface Y (x, t) = Y0 must satisfy the condition

∂Y

∂t
+ ∇Y · dx

dt

∣∣∣∣
Y=Y0

= 0. (3.11)

Gibson (1968) has derived an expression for the displacement speed sd for an iso-
surface of diffusive scalars. Extending this result to a reactive scalar defined by (3.10)
(cf. Echekki & Chen 1996) this leads to

dx

dt

∣∣∣∣
Y=Y0

= v + n sd, (3.12)

where

sd =

[∇ · (ρD∇Y ) + ṁ

ρ|∇Y |
]

0

. (3.13)

The normal vector on the iso-concentration surface is defined as

n =
∇Y
|∇Y |

∣∣∣∣
Y=Y0

. (3.14)

We want to formulate a G-equation that describes the location of the thin reaction
zones such that the iso-surface Y (x, t) = Y0 coincides with the iso-surface defined by
G(x, t) = G0. Then the normal vector defined by (3.14) is equal to that defined by
(3.1) and also points towards the unburnt mixture. Using (3.1) and (3.3) together with
(3.13) leads to

ρ
∂G

∂t
+ ρv · ∇G = −

[∇ · (ρD∇Y ) + ṁ

|∇Y |
]

0

|∇G|. (3.15)

Echekki & Chen (1998) show that the diffusive term appearing on the right-hand
side of (3.15) may be split into one term accounting for curvature and another for
diffusion normal to the iso-surface

∇ · (ρD∇Y ) = ρD|∇Y |∇ · n+ n · ∇(ρDn · ∇Y ), (3.16)

where the definition (3.14) has been used. This is consistent with the definition (3.7)
if (3.1) is replaced by (3.14). When (3.16) is introduced into (3.15) it can be written as

ρ
∂G

∂t
+ ρv · ∇G = −ρD κ|∇G|+ ρ (sn + sr)|∇G| . (3.17)

Here κ may be expressed by (3.7) in terms of the G-field. The quantities sn and sr are
contributions due to normal diffusion and reaction to the displacement speed of the
thin reaction zone and are defined as

ρsn = −n · ∇(ρDn · ∇Y )

|∇Y | , (3.18)

ρsr = − ṁ

|∇Y | . (3.19)

In a steady, unstretched planar laminar flame the sum of ρsn and ρsr would be equal
to the mass flow rate ρs0L. Here, however, the unsteady mixing and diffusion of all
chemical species and the temperature in the regions ahead of the thin reaction zone
will influence the local displacement speed. Therefore the sum of sn and sr cannot be
prescribed, but is a fluctuating quantity, that couples the G-equation to the solution of
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the balance equations of the reactive scalars. There is reason to expect, however, that
the sum of the values of sn and sr , defined by s?L, is of the same order of magnitude as
the laminar burning velocity s0L. A recent evaluation of DNS-data (Peters et al. 1998)
confirms that estimate. In that paper it is also found that the mean values of sn and sr
depend slightly on curvature. This leads to a modification of the diffusion coefficient
D which takes Markstein effects into account. We will ignore these modifications here
and consider the following model equation for the thin reaction zone regime:

ρ
∂G

∂t
+ ρv · ∇G = −ρDκσ + ρs∗L σ (3.20)

where (3.9) has been used. This equation, valid in the thin reaction zones regime,
will be called the diffusive G-equation. It is very similar to the kinematic G-equation
(3.8), which was derived for the corrugated flamelets regime. An important difference,
apart from the difference between s0L and s∗L, is the difference between DL and D and
the disappearance of the strain term in (3.20) as compared to (3.8). The Markstein
diffusivity DL, although of the same order of magnitude as D, may even be negative
if, as for lean hydrogen flames, the Lewis number is sufficiently smaller than unity.
Then the kinematic G-equation is ill-posed and must be modified to be able to
describe thermo-diffusive instabilities as analysed by Sivashinsky (1977). The diffusive
G-equation does not pose such problems since D is always positive.

In an analytical study of the response of one-dimensional constant-density flames
to time-dependent stretch and curvature, Joulin (1994) has shown that in the limit
of high-frequency perturbations the effect of strain disappears entirely and Lewis-
number effects also disappear in the curvature term such that DL approaches D.
This analysis was based on one-step large-activation-energy asymptotics with the
assumption of a single thin reaction zone. It suggests that (3.20) could also have been
derived from (3.8) for the limit of high-frequency perturbations of the flame structure.
This strongly supports the physical picture derived for the thin reaction zones regime.

It is interesting to analyse the order of magnitude of the different terms in (3.20)
for conditions where Kolmogorov eddies enter into the preheat zone. This can be
done by normalizing the independent quantities and the curvature in this equation
with respect to Kolmogorov length and timescales

t̂ = t/tη, x̂ = x/η, κ̂ = ηκ, ∇̂ = η∇. (3.21)

Using η2/tη = ν one obtains

∂G

∂t̂
+
v · ∇̂G
vη

= −D
ν
κ̂|∇̂G|+ s∗L

vη
|∇̂G| . (3.22)

Since Kolmogorov eddies can perturb the flow field that acts on the G-field, all
derivatives, the curvature and the velocity ratio v/vη are typically of order unity. In
flames D/ν is also of order unity. However, in the thin reaction zones regime the
Karlovitz number is larger than unity and thereby, due to (2.6)

vη > s∗L, (3.23)

indicating that the last term in (3.22) will be small and on the right-hand side the first
term containing the curvature will be dominant. This indicates that wrinkling of the
reaction zone front by small eddies, leading to large local curvatures, is responsible
for the advancement of the front. Applying the same order of magnitude analyses to
(3.8) shows that in the corrugated flamelets regime, since the Karlowitz number is
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smaller than unity, the propagation term s0Lσ is dominant and the effect of curvature
and strain are of lower order.

We want to base the following analysis on an equation which contains only the
leading-order terms in both regimes. Therefore we keep the propagation term s0Lσ and
the strain term Ln · ∇v · nσ in (3.8) from the corrugated flamelets regime and the
curvature term D κσ in (3.20) from the thin reaction zones regime. The leading-order
equation valid in both regimes then is

ρ
∂G

∂t
+ ρv · ∇G = ρs0Lσ − ρD κσ + ρLn · ∇v · nσ. (3.24)

4. Modelling premixed turbulent combustion for both regimes
The important step in applying the G-equation either in numerical simulations or for

turbulence modelling is to assume its validity not only at G(x, t) = G0 but in the entire
flow field. Then the G-equation has properties of a field equation. These properties
have been investigated for turbulent flow fields in a number of papers. In particular
Kerstein, Ashurst & Williams (1988) have performed direct numerical simulations in
a cubic box assuming constant density throughout such that the flow field was not
affected by the flame. Then all G-levels could be interpreted as representing a flame
front. They therefore could consider G0 as a variable and average over all values of
G0 to show that for large times the mean modulus of G may be interpreted as the
flame surface area ratio FT/F , which according to (1.2) is equal to the ratio of the
turbulent to the laminar burning velocity

σ̄ = |∇G| = sT

sL
. (4.1)

A similar approach has recently been used by Ulitsky & Collins (1997) to determine
the effect of large coherent structures on the turbulent burning velocity.

Peters (1992) considered turbulent modelling of the kinematic G-equation and
derived Reynolds-averaged equations for the mean G and the variance G′2. A constant
density was assumed and G and the velocity component vα were split into a mean
and a fluctuation. The main source term in the variance equation resulted from the
propagation term s0Lσ in (3.8) and was defined as

ω = −2 s0L σG
′. (4.2)

This term was called kinematic restoration in order to emphasize the kinematic
effect of local laminar flame propagation. It accounts for the smoothing effect of
the G-field and thereby the flame surface by flame advancement with the laminar
burning velocity. Flame front corrugations produced by turbulence are restored by
this kinematic effect. Closure of this term was achieved by deriving a scalar spectrum
function for two-point correlations of G in the limit of a large ratio of v′/s0L and large
Reynolds numbers. From the analysis an expression results which relates ω to the
variance G′2 and k̄/ε̄ as

ω = cω
ε̄

k̄
G′2 (4.3)

with cω = 1.62. This expression shows that kinematic restoration plays a similar
role for fluctuations of the flame front as scalar dissipation plays for fluctuations of
diffusive scalars.

It was also shown that kinematic restoration is active at the Gibson scale, since `G
represents the first cut-off from the inertial range in the scalar spectrum function and
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therefore is responsible for removing scalar fluctuations. A dissipation term involving
the Markstein diffusivity was shown to be most effective at the Obukhov–Corrsin
scale `C and a term called scalar-strain co-variance was shown to be most effective at
the Markstein lengthL. In the corrugated flamelets regime the Gibson scale is larger
than `C and L . Therefore these additional terms can be neglected.

The scaling relation (4.3) shows that in the limits of large ratios v′/s0L and large
Reynolds numbers the kinematic restoration is independent of s0L and can be modelled
in terms of quantities defined at the integral scales. Thereby the variance equation
becomes independent of s0L. This also suggests that the mean propagation term s0Lσ̄
should be independent of s0L in this limit. Dimensional analysis then suggests the
scaling relations

s0Lσ̄ ∼
(
ε̄

k̄
ω

)1/2

∼ ε̄

k̄
(G′2)1/2. (4.4)

For steady-state turbulent flames the variance G′2 was shown to be proportional to
the square of the integral lengthscale ` (cf. (5.21 below)). Using (2.1) and (4.1) one
obtains

sT ∼ v′,
which is Damköhler’s result (1.5) for the turbulent burning velocity in the large-scale
turbulence limit. We note that it is valid for the corrugated flamelets regime only.

A similar analysis as in Peters (1992) can be performed for both regimes based on
(3.24). If this equation is considered to be valid everywhere in the flow field, the effect
of variable density may be included by considering Favre averages by splitting G and
the velocity component into Favre means and fluctuations

G = G̃+ G′′ , vα = ṽα + v′′α . (4.5)

This leads to an equation for the Favre mean value of G

ρ
∂G̃

∂t
+ ρ ṽ · ∇G̃+ ∇(ρ ṽ′′G′′) = −ρD κ̃σ + ρ s0Lσ̃ + ρ̄ L̃n · ∇v · nσ. (4.6)

The condition G̃ = G0 now defines the location of the mean flame front, while the

Favre variance G̃′′2 accounts for flame front fluctuations and thereby is a measure of
the flame brush thickness. We will not enter into the modelling of the different terms
in (4.6) in this paper except for the quantity σ̃ in the propagation term, for which an
equation will be derived in § 5. Models for the other terms are discussed in Bray &
Peters (1994).

The equation for G̃′′2 may be derived by subtracting (4.6) from (3.24) to obtain an
equation for G′′. After multiplying this by 2G′′ and averaging one obtains

ρ
∂G̃′′2

∂t
+ ρ ṽ · ∇G̃′′2 + ∇ · (ρ ˜v′′G′′2) = −2ρ̄ ṽ′′G′′ · ∇G̃− ρω̃ − ρχ̃− ρ̄DK̃σ. (4.7)

Here the derivation of the terms on the left-hand side and the first term on the
right-hand side is straightforward. The Favre kinematic restoration ω̃ is important in
the corrugated flamelets regime only (see the Appendix) and is defined similarly to
(4.2). The scalar-strain co-variance was neglected because it is small in the corrugated
flamelets regime as shown in Peters (1992) and does not appear in the thin reaction
zones regime. The last two terms represent scalar dissipation χ̃ and a curvature term

K̃σ. They originate from the second term on the right-hand side of (3.24) which,
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multiplied with 2G′′, leads after averaging to a term of the form

−2ρ̄DG̃′′κσ.

In order to interpret this term we split the product G′′κσ into two terms

2G′′κσ = −∇ ·
(

2
G′′∇G
|∇G|

)
|∇G|+ 2∇G′′∇G. (4.8)

After averaging one may replace products like G̃ G′′ and ˜∇G′′∇G by G̃′′2 and ˜∇G′′∇G′′,
respectively, to obtain

−2ρ̄DG̃′′κσ = −ρ̄DK̃σ − ρ̄χ̃, (4.9)

where K is a curvature-like term defined by

K = ∇ ·
(
−∇G

′′2

|∇G|
)

(4.10)

and

χ̃ = 2D ˜(∇G′′)2 (4.11)

is the scalar dissipation defined in the usual way.
Closure of the sink terms ω̃ and χ̃ in (4.7) proceeds in a similar way as in Peters

(1992) and is shown in the Appendix. However, owing to the order of magnitude
analysis performed in § 3, the dominant term in the thin reaction zones regime is
the scalar dissipation term rather than the kinematic restoration term. The closure
relation for the scalar dissipation is then obtained as

χ̃ = cχ
ε̃

k̃
G̃′′2, (4.12)

where cχ = 1.62. This closure is standard (Jones 1994) and shows that χ̃ becomes
independent of the molecular diffusivity in the limit of large Reynolds numbers.
Therefore, since ω̃ is small and the last term in (4.7) can be neglected in that limit,
the solution of the variance equation becomes independent of D.

However, as in the corrugated flamelet regime, we need to find the appropriate
scaling relation for σ̃. Introducing an artificial dimension for the distance function
G, say g, one finds that χ̃ has the dimension g2 s−1 and σ̃ has the dimension g m−1.
Dimensional analysis for the thin reaction zone regime must involve the molecular
diffusivity D rather than the burning velocity, since the curvature term in (3.20) was
found to be dominant. For large Reynolds numbers one therefore obtains the scaling

χ̃ ∼ Dσ̃2 ∼ ε̃

k̃
G̃′′2. (4.13)

With (2.1) the ratio ε̃/k̃ can be expressed in terms of Dt/`
2 since Dt ∼ v′`. Again,

since the variance G̃′′2 is proportional to the square of the integral lengthscale for
steady-state turbulent flames this scaling relation for σ̃ can be used with (4.1) to
derive a relation for the turbulent burning velocity

sT

sL
∼
(
Dt

D

)1/2

,

which is Damköhler’s expression (1.9) for small-scale turbulence.
This surprising result for the turbulent burning velocity needs a further physical

interpretation. As noted in the introduction, Damköhler had simply used the scaling
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for the laminar burning velocity and had replaced the molecular diffusivity by the
turbulent diffusivity. Here the scaling arguments are quite different. In the thin reaction
zones regime turbulent eddies can enter into the chemically inert preheat zone and
increase the mixing process. This is accounted for in (4.12) based on spectral scalar
transfer between the integral scale and the Kolmogorov scale by relating χ̃ defined
by (4.11) to quantities defined at the integral scales. This requires that scalar mixing
down to the Kolmogorov scale occurs immediately ahead of the inner layer. In order
to understand the meaning of σ̃ in the thin reaction zones regime we define a Taylor
lengthscale λG of the diffusive G-equation by

χ̃ ∼ D
G̃′′2

λ2
G

= Dσ̃2 or σ̃ =
(G̃′′2)1/2

λG
. (4.14)

Then, using (2.3) for the Kolmogorov time with ν = D, (2.1) and (4.13) result in

λG ∼ v′tη. (4.15)

This shows that the Taylor scale λG may be interpreted as the distance over which
an integral eddy with turnover velocity v′ will transport a Kolmogorov eddy during
its own turnover time. Since during that time concentrations and temperature fully
diffuse across a Kolmogorov eddy the scale λG represents the distance necessary for
molecular mixing.

Since σ̃ was interpreted according to (4.1) as the flame surface area ratio, and

G̃′′2 is proportional to the square of the flame brush thickness, (4.14) shows how
much the flame surface area ratio must increase in order to obtain molecular mixing
immediately ahead of the inner layer. Equation (4.14) may also be written as

λGFT = (G̃′′2)1/2F. (4.16)

Similar to the interpretation given in Bray & Peters (1994) for the corrugated flamelets
regime, this geometrical relation illustrates for the thin reaction zones regime that
λG may be interpreted as a lengthscale of flame crossings within the turbulent flame
brush.

5. A model equation for the flame surface area ratio for both regimes
In this section we want to derive a model equation for the flame surface area

ratio that is valid in both the corrugated flamelets regime and the thin reaction
zones regime. For thin flames in a constant-density flow the quantity σ̄ = |∇G| was
interpreted according to (4.1) as the flame surface area ratio. For illustration purposes
we will therefore first derive an equation for σ by dividing (3.24) by the local density
ρ and apply the ∇-operator to both sides. Multiplying this with −n = ∇G/|∇G| one
obtains

∂σ

∂t
+ v · ∇σ = −n · ∇v · nσ + s0L(κσ + ∇2G)− D[∇ · (κ∇G) + κ2σ]. (5.1)

Here the terms proportional to D are a result of the transformation

n · ∇(κσ) = −∇G · ∇κ− κ∇2G− κ2σ = −∇ · (κ∇G)− κ2σ. (5.2)

The first term on the right-hand side of (5.1) accounts for straining by the flow field.
It will lead to an increase of flame surface area ratio. The second term containing the
laminar burning velocity will have the same effect as kinematic restoration has in the
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variance equation. The last term is proportional to D and its effect will be similar to
that of scalar dissipation on the variance.

Since closure of (5.1) cannot be derived in a systematic way we revert to the

scaling relations (4.4) and (4.13) which relate σ̃ to ε̃/k̃ and G̃′′2. However, since these
relations were derived for the limit of large v′/s0L and large Reynolds numbers only,
they account only for the increase of the flame surface area ratio due to turbulence,
beyond the laminar value σ̃ = 1 for v′ → 0. We will therefore write σ̃ as

σ̃ = 1 + σ̃t (5.3)

where σ̃t is the contribution of turbulence to the flame surface area ratio σ̃.
In the following we place ourselves in the context of two-equation modelling and

use the algebraic scaling relations (4.4) and (4.13) in order to combine (4.7) for G̃′′2
with equations for the Favre-averaged turbulent kinetic energy k̃ and the dissipation
ε̃. Since we intend to derive an algebraic equation for the turbulent burning velocity
we do not need and will not present models for turbulent transport terms. Therefore
we do not explicitly consider the last term on the left-hand side of (4.7). We also
neglect the last term on the right-hand side of (4.7) since it is small in the large
Reynolds number limit. In addition, we use the closure relation for the sum of ω̃+ χ̃
from (A 28) in the Appendix and write (4.7) as

ρ
∂G̃′′2

∂t
+ ρ̄ṽ∇G̃′′2 = −2ρ̄ṽ′′G′′ · ∇G̃− csρ̄ ε̃

k̃
G̃′′2 + (turbulent transport terms). (5.4)

The equations for k̃ and ε̃ are written as

ρ̄
∂k̃

∂t
+ ρ̄ṽ · ∇k̃ = ρ̄

(
−ṽ′αv′β

) ∂ṽα
∂xβ
− ρ̄ ε̃+ (turbulent transport terms), (5.5)

ρ̄
∂ε̃

∂t
+ ρ̄ ṽ · ∇ε̃ = cε1

ε̃

k̃

(
−ṽ′αv′β

) ∂ṽα
∂xβ
− cε2 ε̃

2

k̃
+ (turbulent transport terms), (5.6)

with cε1 = 1.44 and cε2 = 1.92. We interpret (4.4) and (4.13) to be relations between

σ̃t, ε̃/k̃ and G̃′′2 and we are now able to derive model equations for σ̃t in the two
regimes. We will start with the corrugated flamelets regime and will use (4.4) to derive

a differential relation between σ̃t and ε̃, k̃ and G̃′′2 as

dσ̃t
σ̃t

=
dε̃

ε̃
− dk̃

k̃
+

1

2

dG̃′′2

G̃′′2
. (5.7)

Combining (5.3)–(5.6) one obtains an equation for σ̃t of the form

ρ̄
∂σ̃t

∂t
+ ρ̄ṽ · ∇σ̃t = (cε1 − 1)ρ̄

(−ṽ′′αv′′β)

k̃

∂ṽα

∂xβ
σ̃t + ρ̄

(−ṽ′′G′′) · ∇G̃
G̃′′2

σ̃t

−
(
cε2 − 1 +

cs

2

)
ρ̄
ε̃

k̃
σ̃t + (turbulent transport terms) . (5.8)

In this equation the terms on the left-hand side represent the unsteady change
and convection of σ̃t. The first term represents the production of the flame surface
area ratio by mean velocity gradients and the second term that by local turbulent
fluctuations. The last term accounts for the destruction of the flame surface area ratio
by kinematic restoration. It may be cast into a form proportional to s0L by replacing
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ε̃/k̃ using (4.4) as
ε̃

k̃
∼ s0L σ̃t

(G̃′′2)1/2
. (5.9)

In the corrugated flamelets regime the model equation for the increase of the flame
surface area ratio due to turbulence is then

ρ̄
∂σ̃t

∂t
+ ρ̄ṽ · ∇σ̃t = c0ρ̄

(−̃v′′αv′′β)

k̃

∂ṽα

∂xβ
σ̃t + ρ̄

Dt(∇G̃)2

G̃′′2
σ̃t

−c2ρ̄
s0Lσ̃

2
t

(G̃′′2)1/2
+ (turbulent transport terms) (5.10)

where c0 = cε1 − 1 = 0.44. The last term contains the constant c2 which needs to be
determined by comparison with experiments. In the turbulent production term we
have used the gradient flux approximation

(−ṽ′′G′′) = Dt∇G̃. (5.11)

It may be used here but as shown in Bray & Peters (1994) this modelling assumption
should not be introduced into (4.6) because there it would result in an elliptic term
which contradicts the parabolic character of the G-equation.

Differently from the usual model equations that are valid in the large Reynolds
number limit like those for k̃ and ε̃ (5.10) contains a molecular quantity, the laminar
burning velocity. Therefore σ̃t cannot be defined at the integral scales, but as noted at
the end of § 4, it is inversely proportional to the Taylor length λG. However, if (5.10)
is multiplied with s0L, one obtains an equation for the product s0Lσ̃t, which according
to (4.4) is a quantity defined at the integral scales.

A similar approach can be taken in the thin reaction zones regime where now
the scalar dissipation χ̃ is the main term responsible for reducing fluctuations of the
reaction zone. Using (4.13) this leads to the differential relation

2
dσ̃t
σ̃t

=
dε̃

ε̃
− dk̃

k̃
+

dG̃′′2

G̃′′2
(5.12)

rather than (5.7). We then obtain an equation similar to (5.10), except with a factor
2 in front of the turbulent production term and cs replacing cs/2 in the last term. In

the last term, however, we now use (4.13) to replace ε̃/k̃ as

ε̃

k̃
∼ Dσ̃2

t

G̃′′2
. (5.13)

Therefore, in the thin reaction zones regime the following equation is obtained:

ρ̄
∂σ̃t

∂t
+ ρ̄ṽ · ∇σ̃t = c0ρ̄

(−ṽ′′αv′′β)

k̃

∂ṽα

∂xβ
σ̃t + 2 ρ̄

Dt(∇G̃)2

G̃′′2
σ̃t

−c3ρ̄
Dσ̃3

t

G̃′′2
+ (turbulent transport terms). (5.14)

The last term in (5.14) contains the constant c3 which must be determined empirically.
It is proportional to σ̃3

t and therefore differs from the last term in (5.10) which was
proportional to σ̃2

t . It models the effect of scalar dissipation on the flame surface area
increase and displays the fundamental difference between the two regimes. Equation
(5.14) contains a molecular quantity, the diffusivity D. As for (5.10) we conclude
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that σ̃t cannot be a quantity defined at the integral scales. However, if we multiply
(5.14) with Dσ̃t, we obtain an equation for Dσ̃2

t , which is again a quantity defined at
the integral scales according to (4.13). This also justifies the appearance of a term
proportional to σ̃3

t in (5.14).
At this point we take guidance from (5.1) which, after averaging, contains sink

terms proportional to s0L and to D. Therefore the last terms in (5.10) and (5.14) are
assumed to be additive, the former accounting for flame surface area ratio destruction
in the corrugated flamelets regime and the latter that in the thin reaction zones regime.
A model equation for σ̃t that covers both regimes would therefore be

ρ̄
∂σ̃t

∂t
+ ρ̄ṽ · ∇σ̃t = c0ρ̄

(−ṽ′′αv′′β)

k̃

∂ũα

∂xβ
σ̃t + c1ρ̄

Dt(∇G̃)2

G̃′′2
σ̃t

−c2ρ̄
s0Lσ̃

2
t

(G̃′′2)1/2
− c3ρ̄

Dσ̃3
t

G̃′′2
+ (turbulent transport terms). (5.15)

The last three terms in this equation represent the turbulent production, the kinematic
restoration and the scalar dissipation of the flame surface area ratio, respectively, and
correspond to the three terms on the right-hand side of (5.1). A constant c1 has been
introduced for a model of the production term that would be valid in both regimes.

We now want to fix the constants c1, c2 and c3 in (5.15) at least tentatively. Existing
data and burning velocity data by Abdel-Gayed & Bradley (1981) and Bradley (1992)
provide some guidance that we will use. For simplicity we will consider the case
of isotropic fully developed turbulence and a fully developed steady-state turbulent
flame. In that limit the production term in (5.4) balances the sink term and one
obtains with (5.11)

2Dt(∇G̃)2 = cs
ε̃

k̃
G̃′′2. (5.16)

As for the instantaneous G-equation we will also impose |∇G̃| = 1 for G̃ 6= G0. This
can be achieved numerically by a procedure called re-initialization (Sussman, Fatemi

& Osher 1994). As a consequence we set |∇G̃| = 1 in (5.16). Furthermore, we relate
the integral lengthscale to v′ and ε̃ as in Bray (1990)

` = 0.37 v′3/ε̃, (5.17)

use a turbulent Schmidt number of Sct = νt/Dt = 0.7 and the model for the eddy
viscosity

νt = 0.09
k̃2

ε̃
(5.18)

to obtain for the turbulent diffusivity the expression

Dt = 0.78 v′`. (5.19)

For ε̃/k̃ we obtain with (2.1) the relation

ε̃

k̃
= 0.247

v′

`
. (5.20)

Taking cs = 2.0 from the Appendix (5.16) provides the following estimate for the
flame brush thickness:

`F,t = (G̃′′2)1/2 = c4 ` (5.21)

where c4 = 1.78.
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Similarly to (5.16) the balance of turbulent production, kinematic restoration and

scalar dissipation in (5.15) leads with |∇G̃| = 1 and (5.21) to

c1

Dt

`2
F,t

σ̃t − c2

s0L
`F,t

σ̃2
t − c3

D

`2
F,t

σ̃3
t = 0. (5.22)

This equation covers two limits: in the corrugated flamelets regime the first two terms
should balance while in the thin reaction zones regime we have the balance of the
first and the last term. With (5.19) and (5.21) it follows for the corrugated flamelet
regime that

c2 c4 s
0
Lσ̃t = 0.78 c1v

′. (5.23)

Experimental data for fully developed turbulent flames suggest that the turbulent
burning velocity is approximately sT = 2 v′ for v′ � s0L in the large-scale turbulence
limit (Abdel-Gayed & Bradley 1981). Using (4.1) it follows that σ̃t = 2v′/s0L and
therefore

c2 c4 = 0.39 c1. (5.24)

Similarly, for the thin reaction zones regime we have the balance

c3 Dσ̃
2
t = c1 Dt. (5.25)

Here we follow Damköhler (1940) who believed that the constant of proportionality
in (1.9) should be unity and set

c3 = c1. (5.26)

In order to define the laminar flame thickness unambiguously in the present context
we also set

D = s0L`F . (5.27)

Then (5.22) leads to the quadratic equation

σ̃2
t + 0.39

`

`F
σ̃t − 0.78

v′`
s0L`F

= 0 (5.28)

with the solution

σ̃t = −0.39

2

`

`F
+

((
0.39

2

`

`F

)2

+ 0.78
v′`
s0L`F

)1/2

. (5.29)

This equation satisfies the limits `/`F → ∞ corresponding to σ̃t = 2v′/s0L for the
corrugated flamelets regime and `/`F → 0 corresponding to σ̃t = (Dt/D)1/2 for the
thin reaction zones regime. Using (4.1) and (5.3) we now express the turbulent burning
velocity as

sT = s0L(1 + σ̃t). (5.30)

In figure 5 the ratio of the turbulent to the laminar burning velocity has been plotted
using (5.29) and (5.30) for lengthscale ratios `/`F ranging from 1 to 100. A constant
lengthscale ratio is typical for experiments at constant pressure with a fixed geometry.
Figure 5 thus shows the ‘bending’ behaviour of the turbulent burning velocity as v′/s0L
increases. It corresponds to the deviation from the straight line sT = s0L + 2v′ and
leads to smaller values of sT /s

0
L for small lengthscale ratios.

The burning velocity diagram may also be plotted with the Reynolds number as
a parameter. Such correlations have been plotted in Abdel-Gayed & Bradley (1981)
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Figure 5. Ratio of the turbulent to the laminar burning velocity as a function of v′/s0L
for different lengthscale ratios `/`F .

for Reynolds numbers ranging from Re < 25 to Re = 4600. However, it must be
recognized that in many experiments quantitative information about lengthscales
is missing. Also, in interpreting many experimental data the burning velocity was
assumed to have reached its steady state while it may still have been developing. We
use figures 7, 9 and 11 of Abdel-Gayed & Bradley (1981) and assign the average
Reynolds number values of 1250, 625 and 300, based on the definition (2.5), to these
figures, respectively. The comparison between the curves calculated from (5.29) and
(5.30) and the experimental data collected in Abdel-Gayed & Bradley (1981) is shown
in figure 6. Although the scatter of the data is quite considerable the calculated
burning velocities seem to follow the trend in the data.

In closing this section it should be noted that the flame surface area ratio σ̄ is
related to the flame surface density Σ used by Trouvé & Poinsot (1994) as

σ̄ =

∫ +∞

−∞
Σ(xn) dxn, (5.31)

where xn = n · x is the coordinate normal to the flame brush. A model equation for Σ
proposed by Trouvé & Poinsot (1994) also contains a production term proportional
to Σ and a sink term proportional to sL Σ

2. It therefore describes the kinematic
restoration of flame surface area ratio, valid in the corrugated flamelets regime. Since
it does not explicitly contain a term proportional to DΣ3 it does not describe the
physics in the thin reaction zones regime and cannot recover Damköhler’s limit of
small-scale turbulence.

6. Discussion
It is the aim of the present paper to extend the flamelet approach beyond the

corrugated flamelets regime into a regime which now is called the thin reaction zones
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Figure 6. Comparison of the burning velocity ratio calculated from (5.29) and (5.30) (solid lines)
with data by Abdel-Gayed & Bradley (1981) (the origin of the individual data points may be
found in that reference). (a) Re = 1250 (calculated) and ranging between 1000 and 1500 (data);
(b) Re = 625 (calculated) and ranging between 500 and 750 (data); (c) Re = 300 (calculated) and
ranging between 250 and 350 (data).

regime. It can be shown that the reaction zone represents a surface within the flow
similar to the flame front in the corrugated flamelets regime. This property could be
exploited to apply the level-set approach. In this formulation the curvature term rather
than the propagation term becomes dominant. The curvature term contains the mass
diffusivity rather than the Markstein diffusivity. The latter appears in the curvature
term in the corrugated flamelets regime, but there it is a higher-order term and may
be neglected to leading order. As a consequence of this leading-order analysis the
Markstein length and thereby the Lewis number does not enter into the formulation.
This simplification may lead to inaccuracies at the border line between the corrugated
flamelets regime and the thin reaction zones regime where the propagation term and
the curvature term are of the same order of magnitude.

In the derivation of the kinematic and the diffusive G-equation gas expansion
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effects in the flame front were not taken into account. These effects are known to
be important at values of v′/s0L up to around 3 where they generate countergradient
diffusion of the progress variable (Bray 1996). Also associated with gas expansion are
flame front instabilities known as the Darrieus–Landau instability. These effects need
to be implemented into the level-set-approach. They become relatively less important
for values of v′ that are much larger than the gas expansion velocity which scales with
s0L. Therefore, in the thin reaction zones regime they are expected to be unimportant,
but they need to be addressed in the corrugated flamelets regime. This will be done
in a forthcoming paper.

7. Conclusions
While the laminar burning velocity is the principle scaling quantity for the cor-

rugated flamelets regime, the diffusion coefficient takes this role in the thin reaction
zones regime. Based on a level-set formulation for both regimes it could be shown
that this manifests itself by scalar dissipation in the thin reaction zones regime rather
that by kinematic restoration, as in the corrugated flamelets regime. Although both
mechanisms act in the same way in both regimes in limiting scalar fluctuations and
thereby the flame brush thickness, their effect on the flame surface area ratio σ̃ is quite
different. A model equation for the flame surface area ratio increase by turbulence σ̃t
was derived for both regimes showing that kinematic restoration of σ̃t scales like σ̃2

t ,
while scalar dissipation scales like σ̃3

t . As an immediate result of these scalings one
recovers Damköhler’s turbulent burning velocity expressions as limiting cases for the
large-scale and the small-scale turbulence regimes, respectively.

Appendix
We want to derive closure relations for the sink terms ω̃ and χ̃ in (4.7). In modelling

non-constant-density turbulence it is generally assumed that closure models derived
for constant-density turbulence can also be used for Favre-averaged equations (Jones
1994). Therefore, for simplicity, we assume constant density and consider the special
case of homogeneous isotropic turbulence. This corresponds to an ensemble of thin
reaction zones propagating in all directions within a given spatial domain. We shall
consider the two-point correlation between G′(x, t) at x and G′(x+r, t) at x+r defined
as

g2(r, t) = G′(x, t)G′(x+ r, t) (A 1)

and proceed in the same way as Peters (1992) by transforming the resulting two-point
correlation equation

∂g2

∂t
+ 2

∂v′α(x+ r, t)G′(x, t)G′(x+ r, t)

∂rα
− 2s0L G

′(x+ r, t)σ′(x, t)

+ 2D σ′(x+ r, t)σ′(x, t) = 0 (A 2)

into Fourier space. This leads to an equation for the scalar spectrum function

Γ (k, t) = 4π k2ĝ2 (A 3)

where the ˆ denotes the Fourier transform and k is the wavenumber.
Since the two-point correlation corresponding to the kinematic restoration is non-

linear its Fourier transform will contain contributions from all wavenumbers k. As in
Peters (1992) we will use the gradient transport assumption of Pao (1965, 1968) and
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assume localness of interactions (cf. Frisch 1995, p. 104) for the turbulent transport
term and for the term corresponding to the kinematic restoration. This means that
these quantities are functions of the local wavenumber k only rather than of the
entire wavenumber spectrum. Using dimensional analysis one realizes that all these
terms have the dimension [g2 s−1]. Closure of these terms therefore suggests that they
should be linear in Γ (k, t). Similar to the previous analysis this leads to the following
equation for the spectrum function

Cs
∂Γ

∂t
+ ε̄1/3

(
5
3
k2/3Γ + k5/3 ∂Γ

∂k

)
+ c1 s

0
L kΓ + c2D k

2Γ = 0, (A 4)

which has the solution

Γ (k, t) = Csχ0ε̄
−1/3H(k0(t))k

−5/3 exp (−3c1(`Gk)
1/3) exp (− 3

4
c2(`Ck)

4/3). (A 5)

Here Cs is the universal constant of the scalar spectrum and χ0 is a reference value
for the scalar dissipation rate. For simplicity of the subsequent calculations we have
assumed an abrupt small-wavenumber cut-off at the integral scale by introducing the
Heaviside function H(k0(t)) where k0 = `−1. This spectrum is similar to that in (3.13)
of Peters (1992) except that the last exponential term which modelled the strain term
has disappeared. Also, since the dissipation term now corresponds to the classical
scalar dissipation, it is linear and the empirical coefficient c2 of Peters (1992) is equal
to c2 = 2Cs. For `−1 < k < `−1

C < `−1
G the exponential terms approach unity and one

obtains the classical −5/3 spectrum for the inertial range.
The Gibson scale `G appearing in (A 5) influences the spectrum function only

at large wavenumbers because in the thin reaction zones regime it is smaller than
the Obukhov–Corrsin scale `C . Therefore kinematic restoration acts merely as an
additional mechanism to reduce the scalar fluctuations. For k � `−1

G this term may
be neglected. We linearize the remaining exponential terms in (A 5) to obtain in the
vicinity of `C the form

Γ (k, t) =
Csχ0H(k0(t))

ε̄1/3 k5/3 + 3
2
CsDk3

. (A 6)

The two terms in the denominator illustrate that the scalar spectrum is determined
by the turbulent flow field through ε̄ for k < `−1

C and by diffusion for k > `−1
C .

Equation (A 4) may be integrated over k between k = k0 and k = ∞. The spectral
transfer term then vanishes and one obtains the analogue of (4.7) for constant-density
homogeneous isotropic turbulence

∂G′2

∂t
= −ω − χ . (A 7)

The terms in these equations are defined as

G′2 =

∫ ∞
k0

Γ (k) dk, (A 8)

ω = C−1
s c1 s

0
L

∫ ∞
k0

kΓ dk (A 9)

and

χ = 2D

∫ ∞
k0

k2Γ dk. (A 10)
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These integrals may be evaluated in order to derive closure relations that relate ω

and χ to G′2 and the parameters ` and ε̄ describing the flow field.
Since the diffusive cut-off occurs at `C we introduce the variable

y = 3
4
c2(`Ck)

4/3 (A 11)

to obtain the scalar dissipation by integrating (A 10) as

χ = χ0 I1 (A 12)

with

I1 =

∫ ∞
y0

exp (−y − γ1/3y1/4) dy, (A 13)

where the small-wavenumber cut-off at k = k0 was introduced which leads with (A 11)
to

y0 = 3
4
c2

(
`C

`

)4/3

, (A 14)

where `/`C is a measure for the inertial range of the scalar spectrum. Furthermore

γ =

(
108 c4

1

c2

)3/4
`G

`C
(A 15)

is proportional to the ratio of `G/`C which should be small in the thin reaction zones
regime. The integral can be expanded for small values of γ1/3 and y0 as

I1 = 1− γ1/3Γ
(

5
4

)− y0, (A 16)

where Γ is the gamma function. Equation (A 16) shows that in the limit γ → 0,
y0 → 0, χ is equal to χ0.

Similarly, we can integrate (A 8) to obtain

G′2 = 3
2
Csχε

−1/3`2/3 I2

I1

, (A 17)

where the integral

I2 = 1
2
y

1/2
0

∫ ∞
y0

y−3/2 exp (−y − γ1/3y1/4) dy (A 18)

can be expanded in the limit γ → 0, y0 → 0 as

I2 = 1− (π)1/2y
1/2
0 + y0 − 2γ1/3y

1/4
0 . (A 19)

Equation (A 17) relates the scalar dissipation χ to G′2. If we use (2.1) for the turbulent
kinetic energy, (5.17) for the integral length scale as well as Cs = 1.2, which is the
value preferred by Monin & Yaglom (1987), we obtain for γ → 0, y0 → 0

χ = cχ
ε̄

k̄
G′2 (A 20)

with cχ = 1.62. This relation is identical to (4.3) for the kinematic restoration obtained
by Peters (1992) for the corrugated flamelets regime. Here, in the thin reaction zones
regime, we recover with (A 20) the classical closure relation for diffusive scalars.

The kinematic restoration can be related to the scalar dissipation as

ω = χγ1/3Γ ( 5
4
)
I3

I1

, (A 21)
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where I3 is defined as

I3 =
1

4Γ ( 5
4
)

∫ ∞
y0

y−3/4 exp (−y − γ1/3y1/4) dy, (A 22)

which can be expanded for γ → 0, y0 → 0 as

I3 = 1− y1/4
0 e−y0/Γ ( 5

4
)− γ1/3Γ ( 3

2
)/(2Γ ( 5

4
)) . (A 23)

Since γ1/3 may be expressed as

γ1/3 =
(
108/c2

)1/4
c1 (s0L/vη)Pr1/4 (A 24)

(A 21) shows that the ratio of the kinematic restoration to the scalar dissipation in
the thin reaction zones regime is proportional to the ratio of the laminar burning
velocity s0L to the Kolmogorov velocity vη . It is interesting to compare this ratio with
that obtained previously for the corrugated flamelets regime by Peters (1992), which,
in the limit γ →∞, when written in the present notation, is

χ = 24γ−4/3ω, (A 25)

where ω is given by (4.3).
For modelling purposes we may now construct formulae that satisfy the limit-

ing expressions (A 21) with I3/I1 = 1 and (A 25) and could therefore be used for
calculations that cover both regimes of premixed turbulent combustion. These are

χ = Fχ(γ
4/3)cχ(̄ε/k̄)G′2 , ω = Fω(γ1/3)cω (̄ε/k̄)G′2 (A 26)

with

Fχ =
24

24 + γ4/3
, Fω =

Γ ( 5
4
)γ1/3

1 + Γ ( 5
4
)γ1/3

. (A 27)

Since the sum of Fχ and Fω varies for γ ranging from γ = 0 to γ → ∞ between a
maximum value of 1.45 and a minimum value of 0.88 we propose replacing Fχ + Fω
by a constant c∗ and write

ω + χ = cs(̄ε/k̄)G′2, (A 28)

where cs = c∗cχ = 2.0.
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